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The objective of the study is to develop a closed-loop control scheme that is capable of
preserving the columnar swirling flow state in the finite-length pipe model of Wang &
Rusak (1996a). The base state consists of a solid body rotation superimposed on axial
plug flow, with two dimensionless parameters: the swirl Ω and the pipe aspect ratio L.
The linear stability properties of the columnar base state are documented and shown
to give rise to unstable global modes above a critical swirl level Ω1, thereby triggering
vortex breakdown. Our study focuses on the derivation of a control method in order
to quench the linear development of the Wang & Rusak instability. An optimal control
approach is then devised for a reduced-order system which is obtained by a suitable
projection on a low-order subspace of the N least-stable eigenmodes. The actuator
consists of perturbations of the inlet circulation and its time history is selected so
as to minimize a cost-functional incorporating both the state energy and the control
energy. A Riccati-based formulation leads to the determination of the optimal gain
matrix for the low-order system. When applied to the full linear system, the feedback
law for N = 4 succeeds in maintaining the columnar base state for swirl levels as high
as 13% above global onset. The control scheme is found to be robust with respect
to noise and to uncertainties in parameter settings. It remains effective even under
partial-state information conditions.

1. Introduction
Vortex breakdown is a widespread phenomenon that affects a variety of flow

situations, from leading-edge vortices on delta wings to atmospheric tornadoes and
flame holders in combustion devices. It consists of a sudden change in the topology
of the streamlines signalled by the appearance of a stagnation point within the flow.
From a more fundamental point of view, it is best analysed on generic configurations
such as a free vortex with axial flow, rotating flow in pipes, or in closed cylindrical
containers. The objective of the present study is to design an optimal closed-loop
flow control scheme which prevents vortex breakdown in the idealized setting of a
columnar vortex with axial flow contained in a circular pipe of finite length.

Vortex breakdown was first observed experimentally by Peckham & Atkinson
(1957) on gothic wings at sufficiently high angle of attack. Later experimental studies
(Elle 1958; Werlé 1960; Lambourne & Bryer 1961) have focused on the delta wing
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geometry and identified two main types of vortex breakdown: axisymmetric bubbles
and spirals. It was soon recognized that, independently of the particular geometry
under consideration, the key control parameter is the relative magnitude of the
swirl and the axial flow, namely the swirl parameter. This observation has led to
the examination of vortex breakdown in idealized configurations where the swirl
appears as an explicit parameter. In this context, swirling flow in a circular pipe has
been of primary interest. Since a theoretical model of this flow is being considered
in the present study, we briefly summarize previous experimental and numerical
investigations pertaining to this geometry only. Harvey (1962) appears to have been
the first to make detailed observations and to measure the amount of swirl necessary
to trigger vortex breakdown. Sarpkaya (1971, 1974) identified three kinds of vortex
breakdown, the bubble, the spiral and the double helix, and emphasized the important
role of the applied axial pressure gradient. Several other breakdown states were
detected and analysed quantitatively by Faler & Leibovich (1977a , b) and Escudier,
Bornstein & Maxworthy (1982) among others. More recently, Brücker & Althaus
(1992), Brücker (1993) and Brücker & Althaus (1995) have thoroughly documented
experimentally the spatio-temporal dynamics of breakdown in confined tubes: the
topology of the flow within the tube was shown to be dominated by the existence
of a precessing inclined vortex ring. For a review of vortex breakdown observations
in pipes and closed geometry containers, the reader is referred to Leibovich (1978,
1984), Escudier (1987) or Althaus, Brücker & Weimer (1996).

The first numerical axisymmetric study of vortex breakdown in pipes was conducted
by Kopecky & Torrance (1973). Beran & Culick (1992) demonstrated via a numerical
search of stationary solutions that the onset of breakdown is subcritical, i.e. there
exists an hysteresis loop where both the columnar and vortex breakdown states
coexist. The unsteady direct numerical simulations of Brown & Lopez (1990), Lopez
(1994) and Darmofal (1996) confirmed the subcritical nature of the bifurcation and
interpreted breakdown as the end result of the tilting of axial vorticity into its
azimuthal counterpart.

Over the last forty years, numerous theories and models of vortex breakdown have
been proposed and the reader is referred to the articles of Hall (1972), Leibovich (1978,
1984), Escudier (1987), Delery (1994) and Shtern & Hussain (1996) for comprehensive
reviews. We focus here solely on theoretical aspects that are directly relevant to our
analysis. Within an inviscid and axisymmetric assumption, Squire (1960) established a
criterion for vortex breakdown, corresponding to the critical amount of swirl necessary
to sustain a stationary wave of infinite wavelength. In the bulk of the present paper,
this swirl value corresponds to ΩB . According to Benjamin (1962), vortex breakdown
emerges as a transition of swirling flows from supercritical to subcritical. A columnar
swirling flow is said to be supercritical if it can only support downstream travelling
Kelvin waves in the low-wavenumber limit. Conversely, it is said to be subcritical if
it can support both upstream and downstream travelling Kelvin waves. However, the
mechanisms by which this transition is induced remained unspecified. The swirl value
separating supercritical and subcritical columnar states precisely coincides with the
value ΩB obtained by Squire (1960). It has in fact become customary to ascribe the
subscript B to this particular swirl setting.

Wang & Rusak (1997a) chose instead to consider the nonlinear states sustained
by a vortex with axial flow in a pipe of finite length, for specific upstream and
downstream boundary conditions. A functional is introduced, the extrema of which
correspond to steady nonlinear states. The following bifurcation sequence (see sketch
in figure 2) is then identified as the swirl parameter is increased. A first saddle-node
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bifurcation is encountered at Ω = Ω0 which gives rise to a stable breakdown state and
an unstable solitary wave state, while the basic columnar state remains stable. Above
a higher critical swirl value Ω1, the columnar vortex loses its stability in favour of the
accelerated state, as demonstrated by Wang & Rusak (1996a , b), while the breakdown
state continues to be a stable state, corresponding to the global minimum of the
functional. This loss of stability occurs slightly above the swirl value ΩB of Squire
(1960) at which stationary waves of infinite wavelength are sustained and upstream
propagation becomes possible, the difference arising from finite-length effects. It
should be emphasized that the instability of the columnar state is global in nature:
the bulk of the vortex remains locally neutrally stable. The stability analysis is said
to be local when the flow is assumed to be infinite in the axial direction and can be
therefore decomposed into Fourier components of wavenumber k. The flow is further
referred to as neutral when the dispersion relation yields purely imaginary eigenvalues
only. In the present case, the bulk of the vortex therefore only acts as a waveguide
for travelling Kelvin waves. The upstream and downstream boundaries constitute the
destabilizing agent leading to global onset. There is no need for a local instability
mechanism in the bulk of the pipe, i.e. vortex flows can be stable according to classical
stability criteria (Rayleigh 1916; Howard & Gupta 1962) but unstable according to
the Wang & Rusak mechanism. This theory provides a consistent explanation of the
axisymmetric vortex breakdown process. Its extension to weak viscosity (Wang &
Rusak 1997b) is in good qualitative agreement with the numerical Navier–Stokes
simulations of Beran & Culick (1992), Lopez (1994) and Beran (1994).

Previous vortex breakdown control studies have all been experimental and have
dealt with the technologically relevant delta wing configuration, where the appearance
of vortex breakdown is known to alter the manoeuvrability of the wing. The great
majority have focused on open-loop control design. The first successful attempt
appears to have been carried out by Werlé (1960) who demonstrated that suction
downstream of the nominal breakdown point succeeded in postponing it further
downstream. More recently, Vorobieff & Rockwell (1996) have shown that intermittent
blowing at the trailing edge was also effective in delaying vortex breakdown. Gursul,
Srinivas & Batta (1995) appear to be the only investigators to have successfully
implemented a closed-loop control scheme based on piezo-electric pressure probes
as sensors and varying sweep angle as actuator. The feedback loop was designed to
maintain the position of vortex breakdown under changes in angle of attack. An ex-
cellent review of experimental control strategies is given by Mitchell & Delery (2001).

To our knowledge, there are no previous studies of open- or closed-loop control
in the simpler pipe geometry. The present study relies, in large measure, on recent
implementations of optimal control theory to unstable bounded shear flows such as
boundary layers and plane channel flow. A general review of these developments is
given in Bewley (2001). In accordance with the approach taken here, we only mention
flow control studies based on a preliminary discretization of the equations of fluid
motion, so as to be able to directly apply the techniques of optimal control to a discrete
dynamical system ultimately cast in the standard state-space form ẋ = Ax + Bu.

Following the proportional-integral-differential (PID) control approach developed
by Joshi, Speyer & Kim (1997), Cortelezzi & Speyer (1998) and Bewley & Liu (1998)
applied optimal and robust control theory to the stabilization of plane channel flow by
suction and blowing at the walls. The formulation consisted in suitably discretizing the
linear Orr–Sommerfeld–Squire equations for a single Fourier mode on a finite number
of collocation points in order to end up with a discrete dynamical system. The optimal
control gain matrix in the feedback loop is then obtained by solving an algebraic
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Riccati equation, in order to minimize an appropriate cost-functional measuring the
intensity of the flow disturbances and of the applied control. The formulation was
shown by Bewley & Liu (1998) to effectively preserve plane Poiseuille flow both
supercritically, when the flow is linearly unstable, and subcritically, when it may
exhibit long-lived transients. In the same flow geometry, Cortelezzi & Speyer (1998)
resorted to a similar a priori discretization and focused instead on the preliminary
identification of a suitable subset of controllable two-dimensional modes. A reduced
low-order model was derived in the subspace of these modes. An optimal and
robust control scheme was then computed for the reduced-order system which, when
applied to two-dimensional simulations of plane channel flow, led to a 90% wall-
shear stress reduction. This strategy was further extended to reduce the wall-shear
stress disturbances in a turbulent three-dimensional channel flow by Cortelezzi et al.
(1998) and Lee et al. (2001). Högberg, Bewley & Henningson (2003) have recently
demonstrated that the gains calculated by Bewley & Liu (1998), after a suitable inverse
Fourier transform into physical space, led to spatially localized convolution kernels
that are optimal for controlling three-dimensional perturbations. More strikingly,
these kernels result in the successful quenching of transition in direct numerical
simulations of the full nonlinear equations of fluid motion. This result provides a
strong justification for conducting optimal control studies within a linearized setting
as a first step.

The objective of the present analysis is to control the evolution of linearly unstable
global modes in the vortex tube model of Wang & Rusak (1996a , 1997a). The
actuator consists of perturbations of the inlet circulation that are selected so as to
minimize a suitably defined cost-functional incorporating the intensity of both the
flow disturbances and the applied perturbations. In other words, we wish to vary
the inlet circulation with time so as to restore the stability of the columnar flow
beyond the critical value Ω1 for global instability (see sketch in figure 2). Such an
actuator may be easily implemented experimentally through a variation of the swirl
generator rotation rate as in Billant, Chomaz & Huerre’s (1998) experiment, or of
the vane angle as in Harvey (1962) or Sarpkaya (1971). It is thereby expected that
such inlet forcing will prevent the full nonlinear system from jumping into the vortex
breakdown state, as long as infinitesimal perturbations are injected in the flow.

The formulation proceeds in four distinct steps. First a linear global instability
analysis is performed for a finite-length columnar base state consisting of plug axial
flow and solid body rotation. This step extends Wang & Rusak’s (1996a) global
instability study to all values of the swirl Ω . A reduced-order discrete dynamical
system is subsequently derived by projection onto a subset of least stable modes.
Optimal full-state information control theory is then implemented to determine the
optimal control gain for this reduced system. In a final step, this gain control law is
implemented on the full linear system.

The study is organized according to the following outline: the general formulation
and the main results of Wang & Rusak’s analysis are presented and summarized in § 2.
The global linear instability analysis is performed in § 3. In § 4, the discrete reduced-
order system is derived and a corresponding optimal feedback law is determined. Its
effectiveness for the full system is evaluated in § 5. The presentation continues with a
parametric study and an assessment of various robustness issues in § 6. Section 7 is
devoted to issues associated with the practical implementation of the above control
strategy. Different choices of actuators are discussed in terms of their effectiveness
in delaying vortex breakdown onset. Furthermore, we account for the fact that, in
any real situation, only partial information on the state of the system is available
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Figure 1. Flow configuration. (a) Sketch of breakdown state and essential flow variables;
axisymmetric streamsurfaces ψ(y, z, t) = const. have been represented by their intersections
with a meridional plane. (b) Base flow consisting of plug axial flow and solid body rotation.

at discrete sensor locations. In concluding remarks, we summarize our findings and
discuss some of the limitations of the present approach as well as future developments.

2. General formulation
2.1. Squire–Long equations

Consider axisymmetric swirling flow in a pipe of radius R and length l. The viscosity
is set to zero so that the flow is governed by the Euler equations. We use cylindrical
coordinates (r, θ, z) and the velocity components (u, v, w) correspond respectively to
the radial, azimuthal and axial velocity. The flow variables used in the study are
sketched in figure 1(a).

The base flow sketched in figure 1(b) consists of an axial flow w0 superimposed on
a uniform rotation around the z-axis of constant axial vorticity 2ω. Throughout the
paper, we adopt R as length scale and w0 as velocity scale, so that the dimensionless
columnar base flow is

u = 0, v =
√

Ωr/2, w = 1, (2.1)

for 0 � r � 1, 0 � z � L, with L being the non-dimensional pipe length L = l/R and
Ω being the swirl parameter Ω = 4ω2R2/w2

0. The model problem considered in the
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present investigation is seen to involve two control parameters: the swirl Ω and the
pipe aspect ratio L. In what follows, the non-dimensional pipe length is set to L = 10
and only Ω is varied. The influence of the parameter L on the stability properties is
discussed in Wang & Rusak (1996a). At a given swirl above threshold, the number
of unstable modes increases with L.

Since the flow is axisymmetric, it is governed by the so-called unsteady Squire–Long
equations (see Szeri & Holmes 1988, and references therein)

Kt + ψyKz − ψzKy = 0, (2.2)

χt + ψyχz − ψzχy =
1

4y2
(K2)z, (2.3)

χ = −(ψyy + ψzz/2y). (2.4)

In the above system K(r, z, t) = rv is the azimuthal circulation, ψ(r, z, t) is the
stream-function such that u = −ψz/r and w = ψr/r and y = r2/2 is a rescaled radial
coordinate. Instead of working with the azimuthal vorticity η, the reduced vorticity
χ = η/r has been introduced. In terms of the flow variables K , ψ and χ , the columnar
base flow defined in (2.1) takes the form

K0(y) =
√

Ω y, ψ0(y) = y, χ0(y) = 0. (2.5)

Note that, according to (2.2), the azimuthal circulation K(y, z, t) is a conserved
quantity which is simply transported along the flow (an expression of Kelvin’s
theorem) whereas the azimuthal vorticity evolution equation (2.3) accounts for the
tilting of the vorticity via its right-hand side. The stretching of the azimuthal vorticity
is implicitly included through the use of the reduced azimuthal vorticity χ = η/r . As
discussed in Szeri & Holmes (1988), the problem is well-posed once an inlet condition
for K and χ and a boundary condition for ψ on the pipe surface and at the ends are
specified. Since y = 0 and y = 1/2 are streamsurfaces, the lateral boundary conditions
are

ψ(0, z, t) = 0, (2.6)

ψ(1/2, z, t) = 1/2. (2.7)

Condition (2.6) results from axisymmetry whereas condition (2.7) sets the total mass
flux through the pipe. The following three inlet conditions are added:

ψ(y, 0, t) = ψ0(y), (2.8)

K(y, 0, t) = K0(y), (2.9)

χ(y, 0, t) = χ0(y). (2.10)

These conditions effectively prescribe that the base flow be maintained at the inlet
z = 0 in the presence of perturbations, allowing the inlet state a degree of freedom
to develop a radial velocity however. The outlet condition is the same as in Wang &
Rusak (1996a , b, 1997a):

ψz(y, L, t) = 0. (2.11)

A vanishing radial velocity is thereby imposed at the outlet. Note that the columnar
base flow, K0(y), ψ0(y) and χ0(y) is an exact solution of the inviscid nonlinear
equations (2.2)–(2.11).

2.2. Wang & Rusak’s analysis

Wang & Rusak (1997a) have analysed in detail the sequence of stationary states
(∂/∂t = 0) of the Squire–Long equations (2.2)–(2.11) as a function of the swirl
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Figure 2. Qualitative bifurcation diagram of flow states as a function of swirl parameter Ω
in Wang & Rusak’s analysis. The state is described by its minimum axial velocity on the axis.

parameter Ω = 4ω2R2/w2
o . The qualitative results of their study, as sketched in

figure 2, apply not only to the base flow (2.5), but also to general entrance profiles
which are more representative of experimental situations.

Below the value Ω0 = 14.68, the only possible state is the stable columnar vortex.
As Ω increases above Ω0, a saddle-node bifurcation takes place, giving rise to a stable
breakdown state and an unstable accelerated state. At the second, higher critical value
Ω1 = 14.70, the columnar state loses its stability through a transcritical bifurcation
in favour of the accelerated state. In the case of base flow (2.5), Keller, Egli & Exley
(1985) and Wang & Rusak (1997a) have shown that Ω1 = Ω0 +π2/4L2: at sufficiently
large aspect ratios, the bifurcation diagram in figure 2 is only mildly subcritical.
Base flow (2.5) is indeed somewhat unusual: the critical swirl ΩB , as defined in the
introduction, equals Ω0.

3. Linear instability analysis
3.1. Linearized equations

Following Wang & Rusak (1996a), let us superimpose the perturbations, indicated
by primed variables:

K(y, z, t) = K0(y) + K ′(y, z, t),

ψ(y, z, t) = ψ0(y) + ψ ′(y, z, t),

χ(y, z, t) = χ ′(y, z, t),

and linearize the Squire–Long equations (2.2)–(2.11) around the columnar base flow.
It is convenient to introduce the basis of radial functions fi(y) =

√
yJ1(b1i

√
2y) for

i = 1 . . . ∞, where J1 is the Bessel function of order unity and b1i its ith zero.
These functions satisfy the radial boundary conditions for the perturbations, fi(0) =
fi(1/2) = 0. The perturbations are then expanded on this basis, according to

K ′(y, z, t) =

∞∑
i=1

K (i)(z, t)fi(y), (3.1a)

ψ ′(y, z, t) =

∞∑
i=1

ψ (i)(z, t)fi(y). (3.1b)
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Substituting the above expansions into the linearized equations, lead to the infinite
number of uncoupled one-dimensional partial differential equations:

1 0

0 b2
1i − ∂2

∂z2


 (

K̇ (i)

ψ̇ (i)

)
=




− ∂

∂z

√
Ω

∂

∂z
√

Ω
∂

∂z

∂3

∂z3
− b2

1i

∂

∂z




(
K (i)

ψ (i)

)
, (3.2)

with the boundary conditions

K (i)(0, t) = 0, ψ (i)(0, t) = 0, ψ (i)
zz (0, t) = 0, ψ (i)

z (L, t) = 0. (3.3)

The dot denotes the time-derivative. The values Ω = b2
1i are precisely the critical swirls

defined by Benjamin (1962). They correspond to the swirl settings above which the
ith branch of Kelvin waves in the pipe 0 � y � 1/2 admits a stationary solution of
zero frequency and finite real axial wavenumber. In particular, the value ΩB ≡ b2

11 is
the critical swirl first introduced by Squire (1960). Wang & Rusak (1996a) studied
equations (3.2)–(3.3) for the first branch i = 1 and demonstrated that the columnar
base state was stable if and only if Ω < Ω1 = ΩB + π2/4L2. For each particular i, a
similar approach may be followed step by step to demonstrate that equations (3.2)–
(3.3) lead to stable solutions if and only if Ω < b2

1i + π2/4L2. Since b1i+1 >b1i with
b2

11 = 14.68, b2
12 = 49.21, etc., each branch successively loses its stability for higher and

higher swirl values. In the present study, attention is restricted to swirl values in
the range 0 < Ω < b2

12, where at most only the first branch is unstable. Higher-order
branches remain damped.

3.2. Global instability

Global eigenvalues and eigenfunctions of system (3.2)–(3.3) with i = 1 are now sought
in terms of a linear combination of Kelvin waves supported by the columnar base
state. Consider Kelvin waves of the form

K (1)(z, t) = Re{Aeikz+λt}, (3.4a)

ψ (1)(z, t) = Re{Beikz+λt}, (3.4b)

where Re{} is the real part of {}, A and B are two complex amplitudes, k is the
axial wavenumber and λ is at this stage an unknown complex eigenvalue. Upon
substituting (3.4) into the governing equation (3.2), one readily finds that non-trivial
solutions are possible if and only if k and λ satisfy the local dispersion relation

(k2 + ΩB)(λ + ik)2 + Ωk2 = 0. (3.5)

This relation is identical to the one derived by Kelvin (1880) and Chandrasekhar
(1961), provided λ is replaced by its Doppler-shifted counterpart λ + ik due to the
basic advection. For a given λ, there exist in general four complex spatial branches
k1(λ), k2(λ), k3(λ) and k4(λ). Imposing the boundary conditions (3.3) on a linear
combination of these four waves requires that the eigenvalue λ satisfy the global
selection relation

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1√
Ωik1

λ + ik1

√
Ωik2

λ + ik2

√
Ωik3

λ + ik3

√
Ωik4

λ + ik4

k2
1 k2

2 k2
3 k2

4

k1e
ik1L k2e

ik2L k3e
ik3L k4e

ik4L

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.6)
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Figure 3. Global eigenvalue spectrum and associated eigenmodes at the swirl parameter
Ω = ΩB + 0.028. (a) Eigenvalues λi in complex λ-plane; large symbols: zeros of D(λ) given
in (3.6); small symbols: corresponding eigenvalues of the discretized equations (5.1); note the
presence of only one unstable eigenvalue λ1. (b–c) Leading eigenmodes K1(z) and K2(z).

The global spectrum associated with (3.6) is conveniently represented in the complex
λ-plane in figure 3, at the swirl parameter setting Ω = ΩB + 0.028 >Ω1 (see figure 2),
just above the instability threshold of the columnar state. There is only one
unstable eigenvalue λ1 = 2.77 × 10−5, all others being negative real. Such a behaviour
is the signature of a ‘static’ instability, characterized by ωr = λi = 0, as in the
divergence of a buckling beam. To each eigenvalue λi is associated an eigenmode
Xi(z) = (Ki(z), ψi(z))

T . The first two circulation components K1(z) and K2(z) are also
plotted in figure 3. As expected, the number of zeros of Ki(z) increases with the mode
index i. The real parts Re(λ) of the eigenvalues are plotted in figure 4 as a function
of the swirl parameter Ω − ΩB . Note the presence of more and more unstable modes
as Ω is increased. Purely real eigenvalues are indicated by continuous solid curves
whereas pairs of complex-conjugate eigenvalues are denoted by dashed lines. The
latter curves emerge through the coalescence of purely real eigenvalues, the first one
taking place at Ω = ΩB +0.25. Finally, note that linear instability sets in at a swirl
value Ω1 = ΩB + 0.02 which is virtually indistinguishable from ΩB in figure 4.

4. Reduced-order optimal control scheme
The next three sections are devoted to the design of a full-information controller

with the inlet circulation as actuator. Considerations on partial-information control
and other types of possible actuators are postponed to § 7.

4.1. Control theory formulation

One of the first steps in the design of a closed-loop control is to define an actuator
(see e.g. Gunzburger 1995). We choose here to act on the inlet circulation through
the boundary condition K (1)(0, t) ≡ U (t) which replaces K (1)(0, t) = 0 in the unforced
system (3.3). The function U (t) denotes the unknown control. As in Joshi et al. (1997)
we make the change of variables

K (1)(z, t) = K(z, t) + U (t), ψ (1)(z, t) = ψ(z, t), (4.1)
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Figure 4. Growth rate Re(λ) of most unstable eigenvalues as a function of swirl parameter
Ω − ΩB . Solid lines refer to real eigenvalues and dashed lines to complex-conjugate pairs of
eigenvalues. Symbols on curves refer to eigenvalues plotted in figure 3.

which leads to the inhomogeneous system


1 0

0 b2
11 − ∂2

∂z2


(

K̇

ψ̇

)
=




− ∂

∂z

√
Ω

∂

∂z
√

Ω
∂

∂z

∂3

∂z3
− b2

11

∂

∂z




(
K

ψ

)
+

(
−1

0

)
U̇ (t), (4.2)

with homogeneous boundary conditions:

K(0, t) = 0, ψ(0, t) = 0, ψzz(0, t) = 0, ψz(L, t) = 0. (4.3)

The unforced system with non-homogeneous boundary conditions has been trans-
formed into a forced system with homogeneous boundary conditions, a formulation
which is particularly suited to the application of control theory. System (4.2)–(4.3)
may indeed be cast into the standard form

EẊ = AX + Bu, (4.4)

where E, A and B are linear operators, X = (K, ψ)T is the state vector and u is
the control vector, which in the presence of a single actuator equals a scalar, u = U̇ .
The field variables K, ψ should not be mistaken for the original full circulation and
streamfunction introduced in the Squire–Long equations (2.2–2.4).

Let

〈Xα, Xβ〉 =

∫ L

0

(Kα(z)Kβ(z) + ψα(z)ψβ(z)) dz (4.5)



Closed-loop control of vortex breakdown: a model study 77

denote the canonical Cartesian scalar product associated with the L2 norm in state
space and

(uα, uβ) = u∗
αuβ (4.6)

denote the canonical scalar product in control signal space. We also need to introduce
the energy norm associated with the expression for the kinetic energy in primitive
velocity variables. Integration by parts and use of the boundary conditions (4.3) leads
to express the kinetic energy in terms of the so-called ‘energetic’ scalar product

〈Xα, Xβ〉E ≡ 〈Xα, EXβ〉, (4.7)

which only involves the state vector X = (K, ψ)T .
Optimal control theory may then be based on the minimization of a cost-functional

J =

∫ T

0

(〈X, EX〉 + 
2(u, u)) dt (4.8)

over the time interval 0 � t � T , where T is the time horizon and the tuning parameter

 is the so-called control penalty (Zhou, Doyle & Glover 1995). The cost-functional
J combines the disturbance energy and the cost of the control. If 
 is chosen to be
large, the control is ‘expensive’, if it is small, the control is ‘cheap’. In other words,
the parameter 
 weighs the control cost with respect to the state energy.

4.2. Reduced-order system

Different strategies may be used to minimize J: one may stay within a continuous
formulation and adopt an adjoint formulation (see e.g. Andersson, Berggren &
Henningson 1999; Corbett 2000). As discussed in the introduction, we choose instead
to resort to a low-order reduced dynamical system derived from the continuous one
by a Galerkin-type expansion. Consider a finite number N of the eigenvectors Xi(z)
and associated eigenvalues λi determined in § 3. The state X(z, t) is then expanded
according to

X(z, t) =

N∑
i=1

αi(t)Xi(z), (4.9)

where the amplitude functions αi(t) are at this stage unknown and the eigenmodes
Xi(z) have been normalized so that 〈Xi , Xi〉E = 1. Introducing this expression into
equation (4.4) leads to

E
N∑

i=1

α̇iXi = A
N∑

i=1

αiXi + Bu. (4.10)

The eigenvalues λi satisfy by definition the generalized eigenvalue problem derived
from (4.4)

AXi = EλiXi , (4.11)

so that (4.10) becomes

E
N∑

i=1

α̇iXi = E
N∑

i=1

αiλiXi + Bu. (4.12)

Taking the scalar product of this relation with Xj for j = 1 . . . N leads to〈
Xj , E

N∑
i=1

α̇iXi

〉
=

〈
Xj , E

N∑
i=1

αiλiXi

〉
+ 〈Xj , B〉u. (4.13)
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System

Controller

x u

x u

ẋ  = Ax + Bu

u = Kx

Figure 5. Schematic of linear full-information closed-loop control.

Let x = (α1, . . . , αN )T denote the reduced-state vector,

A =


λ1 0

. . .

0 λN




denote the diagonal matrix of eigenvalues and M denote the square ‘matrix of angles’,
with elements Mij = 〈Xj , EXi〉. The projected system (4.13) may then be written in
the form

Mẋ = MAx + 〈Xj , B〉 u. (4.14)

Multiplying both sides by M−1 finally leads to the compact notation

ẋ = Ax + Bu, (4.15)

where the ‘receptivity’ matrix B of dimension N × 1 is by definition B = M−1 〈Xj , B〉.
The reduced discrete dynamical system (4.15) is cast in a form that is directly amenable
to classical optimal control theory as outlined in the next section.

4.3. Application of optimal control theory

Figure 5 summarizes the concept of linear closed-loop control applied to the discrete
system (4.15). The control amplitude u(t) is sought as a linear function of the state
vector x according to

u = Kx, (4.16)

where K(t) is an unknown gain matrix. Optimal control theory (also called LQR or
H2 control) provides a way to select the ‘best’ gain matrix K in order to minimize the
discrete counterpart of the cost-functional (4.8) at time horizon T . When expressed
in the discrete state space x, the cost function becomes

J =

∫ T

0

(x∗Mx + 
2u∗u) dt (4.17)

where ∗ denotes the transconjugate and x∗Mx is the discretized energy norm of x in
the sense of (4.7). When in addition the time horizon T is set to infinity, standard
optimal control theory, as outlined in Zhou et al. (1995), yields the following two key
results:

the gain matrix K becomes independent of time;
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Figure 6. Effect of optimal closed-loop control on the most unstable eigenvalues of the
reduced-order system; �, eigenvalues without control; +, eigenvalues with control. (a) Ω =
ΩB + 1; (b) Ω = ΩB + 4; in both cases 
 = 1.

the solution to the optimization problem is found by solving the Riccati equation
for Y

A∗Y + YA − YBB∗Y/
2 + M = 0, (4.18)

and then selecting the gain matrix to be

K = −B∗Y/
2. (4.19)

The Riccati equation (4.18) is solved by using an eigenvalue decomposition (Laub
1991) and it is implemented in matlab.

The results of the low-order optimal control scheme in the subspace spanned by
the eigenmodes Xi(z), i = 1 . . . N are displayed in figure 6. The eigenvalues of the
uncontrolled system (4.15) (with u = 0) are nothing more than the eigenvalues of the
matrix A. The eigenvalues of the controlled system (4.15) (with u = Kx) are those
of the matrix A + BK. These two sets are compared in figure 6 for the two swirl
parameter settings Ω =ΩB + 1 and Ω =ΩB + 4, when the truncation order is N =12
and the control penalty is 
 =1. In the case of figure 6(a) (Ω = ΩB + 1), the three
unstable modes are effectively shifted to the stable left-hand-side plane. Similarly in
figure 6(b) (Ω =ΩB + 4), the six unstable modes are quenched. It is important to note
that the selected actuator remains effective at Ω = ΩB + 15, i.e. 100% above threshold,
at which stage all the N =12 modes are unstable.

5. Application of the reduced-order optimal control scheme to the full
linear instability equations

In order to verify the efficiency of the low-order control loop designed in the
preceding section, the evolution equations (4.2)–(4.3) are solved numerically. The
continuous state vector X(z, t) = (K(z, t), ψ(z, t))T is replaced by its discrete analogue,
a columnar vector

x(t) = (K(z1, t), . . . , K(zq, t), ψ(z1, t), . . . , ψ(zq, t))
T

made up of the values taken by K(z, t) and ψ(z, t) at the q collocation points
z1, . . . , zq . A standard Chebyshev-collocation technique described, for instance, in
Schmid & Henningson (2001), is implemented with the help of matlab. The collocation
points z1, . . . , zq on the interval 0 � z � L are mapped onto the Gauss–Lobatto
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collocation points z′
j = cos(πj/q) on the interval −1 � z′ � 1. The differential operators

are thereby converted into their matrix counterparts and the boundary conditions at
z = 0 and z = L are handled in the same fashion as in Schmid & Henningson (2001).
This procedure leads to the discrete dynamical system

EẊ = AX + BU̇, (5.1)

which is a discrete representation of the continuous system (4.4). In practice, it is
sufficient to choose q = 60 Chebyshev collocation points in order to recover the
generalized eigenvalues directly computed in § 3 from the roots of D(λ) = 0. As
illustrated in figure 3, the five leading eigenvalues independently calculated via these
two procedures are found to be identical. One should emphasize that searching for
the eigenvalues associated to (5.1) also yields spurious unstable eigenvalues which
can easily be recognized since they do not converge to any definite value as the
truncation parameter q is increased. In order to filter them out, an Euler backward
implicit time scheme with �t = 0.2 is implemented to track the temporal evolution of
the dynamical system (5.1). Initial conditions are taken to be

K(z, 0) = sin

(
πz

2L

)
, ψ(z, 0) = sin

(
πz

2L

)
. (5.2)

From now on, we do not distinguish between the continuous system (4.4) and its
discrete counterpart (5.1). For our purposes, these two systems are deemed to be
equivalent and we present the formulation only in the context of the continuous
system (4.4). It is understood that the calculations are carried out on the discrete
representation.

In the previous section, an optimal gain matrix K was determined in order to control
the time evolution of the reduced-state vector x = (α1, α2, . . . αN )T . The objective is
now to exploit this result to control the full linear system (4.4). The missing link is the
connection between the full-state vector X(z, t) and the reduced-state vector x(t). In
other words, we seek the projection operator Π which projects X onto the subspace
spanned by the N eigenmodes {Xi(z)} of § 4, via the relation

x(t) = ΠX(z, t). (5.3)

Note that the projector Π is not unique: any scalar product in the full-state space
leads to an orthogonal projection of X onto this subspace. In the present analysis,
we choose the scalar product 〈 〉 defined in relation (4.5) and the state vector X is
decomposed into

X =

N∑
i=1

αiXi + R, (5.4)

where the remainder R is such that 〈Xi , R〉 = 0, for all i. Taking the Cartesian scalar
product with the Xj yields

〈Xj , X〉 =

N∑
i=1

αi〈Xj , Xi〉. (5.5)

Let P2 be the N -component operator such that P2X ≡ 〈Xj , X〉 and M2 the N × N

matrix of angles 〈Xj , Xi〉. Expression (5.5) then becomes

P2X = M2x, (5.6)
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E X· = A X + B u

K(z, t)

ψ(z, t)
X =

x u = Kx

u

Π α1(t)

α12(t)

x =

Figure 7. Full-state control scheme: the full-state vector X emerging from the plant is projected
on the subspace spanned by the first N linear eigenmodes by means of the projection
operator Π , to yield the reduced-state vector x. The control given by u = Kx, where K is the
reduced-order optimal gain matrix, is then fed back into the full plant.

whereby the projector Π is finally given by

Π = M−1
2 P2. (5.7)

Note that the matrix M2 can be calculated once and for all, whereas P2 and therefore
Π are formally continuous operators acting on the full-state vector X(z, t). In the
discrete representation outlined at the beginning of this section, P2 and Π become
N × 2q matrices.

The control scheme pertaining to the full state system is sketched in figure 7. Given
the plant EẊ = AX+Bu, the full state X is projected as x onto the reduced subspace,
via the projector Π . From the reduced state x, one determines the optimal control
u = Kx, with K given in § 4, which is fed back into the plant.

The results of the procedure are displayed in figure 8 for the swirl parameter setting
Ω = ΩB + 1, with N = 12 and 
 = 1. Recall that in such a case (see figure 6a), there
are three unstable eigenvalues. In the uncontrolled situation (u = 0), the full-state
kinetic energy (solid line)

E(t) = 〈X, EX〉 ≡ 〈X, X〉E

increases exponentially with twice the slope of the real part of the most unstable
eigenvalue λ1. Upon application of the control, the full-state energy (dashed line)
is driven to zero exponentially fast. The control energy (dotted line) (u, u) remains
bounded, and even decays exponentially with time. These computations constitute the
main result of the present study: the effectiveness of a reduced-order control scheme
has been demonstrated on the full linear system describing the evolution of unstable
modes on columnar vortices.

A less favourable case is illustrated in figure 9 at the higher level of supercriticality
Ω = ΩB + 4, with the same settings for N and 
. There are now six unstable eigenvalues
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Figure 8. Perturbation energy E as a function of time t on a semi-log plot for Ω = ΩB + 1,
N = 12, 
 = 1. Solid line: no control, dashed line: with control; dotted line: control energy.
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Figure 9. Perturbation energy E as a function of time t on a semi-log plot for Ω = ΩB + 4,
N = 12, 
 = 1. Solid line: no control, dashed line: with control; dotted line: control energy.

(figure 6b). The perturbation kinetic energy E(t) with control is seen to grow
exponentially, albeit at a slower growth rate than in the uncontrolled system. In
contrast with the previous situation, the control energy keeps growing exponentially:
the reduced-order control u is unable to quench the instability. The effective control-
lability limit has been determined, by trial and error, to be Ωc = ΩB +1.9, i.e. 13%
above the critical swirl Ω1. At this stage, there are four unstable modes.

6. Parametric study and robustness issues
6.1. Effect of the control penalty 


The control penalty 
 is the weighting factor of the control cost appearing in the
functional J defined in (4.8). It determines if the control is expensive (large 
) or
cheap (small 
). In the reduced space, where optimal control theory is applied, the
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Figure 10. (a) Temporal evolution of the controlled-state energy E on a semi-log plot for
Ω = ΩB +1 and different values of the control penalty 
: 
= 10(	); 
= 5(�); 
= 4(); 
= 3(+);

= 1(◦); 
= 0.5(�); 
= 0.1(�). (b) Asymptotic growth rate σ of the controlled-state energy
versus control penalty 
. (c) Control cost C at time horizon T = 4000 as a function of 
.

control stabilizes the system whatever value of 
 is chosen, as predicted by optimal
control theory. It remains to determine the influence of the 
 parameter on the low-
order control of the full system. Will the projection method work for any value of

 ? Will a small value of 
 stabilize the full state more effectively than a larger one?
Some clues may be found in figure 10(a), which depicts the temporal evolution of the
controlled-state energy on a semi-log plot for different values of 
 at the same swirl
Ω = ΩB + 1.

The resulting asymptotic growth rates of the state energy are displayed in
figure 10(b), as a function of the cost penalty 
. For this particular value of Ω ,
the feedback control is seen to lose its effectiveness as soon as 
 � 8. In other words,
the reduced-order control has to be cheap enough and therefore potentially large
enough in order to work well in the full-state space. Figure 10(b) indicates that the
most efficient control is not necessarily the cheapest; there is an optimal value 
 ∼ 4
maximizing the decay rate of the state energy. The cost of the control C =

∫ ∞
0

u∗u dt

is represented as a function of 
 in figure 10(c). In practice the time integration is
stopped at T = 4000, a value which is large enough so that the time-integral defining
C has reached an asymptotic plateau for all 
-values of interest. The most efficient
stabilization (at 
 = 4) is seen to be obtained for the minimum cost. This parametric
study demonstrates that the most efficient control should be designed with 
 = 4, at
least at this swirl setting.

6.2. Effect of the reduction order N

According to the previous section, there are four unstable eigenvalues at the
effective controllability limit Ωc. This observation suggests that it may be possible to
decrease the reduced-space dimension N to the four most unstable modes, without
compromising controllability. The effect of N on the temporal evolution of the
controlled-state energy is displayed in figure 11, at the swirl parameter Ω = ΩB +1.7,
in which case four modes are unstable. Surprisingly, N = 4 is nearly as effective as
N = 12 in stabilizing the system. However as N is decreased to 3, the flow cannot be
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Figure 11. Effect of the reduced system order N . Perturbation energy E as a function of time
t on a semi-log plot for Ω = ΩB + 1.7, 
 = 5 and different values of N : N = 12(	), N = 4(�)
and N = 3(◦).

controlled: in this instance, the design of the control scheme has failed to account for
one of the four unstable modes!

6.3. Robustness considerations

The robustness of the control scheme can be heuristically tested by adding a random
noise at each time step with the same mean energy as the initial condition (5.2). The
noise is selected to have a standard deviation of 36% of its mean energy. As seen
in figure 12 for Ω = ΩB + 1, the control remains effective since the controlled-state
energy remains bounded. Note, however, that it is no longer driven to zero, as in
figure 8 in the absence of noise. The controlled-state energy is seen to oscillate around
a mean value of about 3600 times the noise energy with a standard deviation of
105%. Although the controlled system does not diverge, it amplifies external noise
both in the mean response and in the intensity of the oscillations about the mean.

Robustness with respect to uncertainties in control-parameter settings, as defined
in Or, Cortelezzi & Speyer (2001) may also be tested. First a control is designed for a
nominal parameter value, say Ωp , and the effective control range is then defined as the
interval in Ω where the control designed for Ωp still stabilizes the flow at Ω . Results
are displayed in figure 13. The control range, represented by a vertical segment, is
plotted as a function of the nominal parameter value Ωp − ΩB . The two vertical solid
lines correspond, respectively, to the instability onset at Ω − ΩB = π2/4L2 ∼ 0.02 to
the left and to the effective controllability limit of 13% to the right. The control range
is seen to present strong non-uniformities but there are only very few nominal swirls
Ωp where it shrinks down to a single point. This graph may also be interpreted in
another way: for a given operational swirl Ω − ΩB along the vertical axis, the shaded
area selects a horizontal segment characterizing the swirl measurement error which
can be tolerated without compromising control effectiveness. The above considerations
indicate that the control generally remains effective even if the swirl setting is off-
design.
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Figure 12. Robustness of control scheme with respect to noise: perturbation energy E as
a function of time t on a semi-log plot for Ω = ΩB + 1, N = 12 and 
 = 1. Random
noise of the same energy as the initial condition is added at each time step, with a standard
deviation of 36% and spatially distributed over the first N eigenmodes. Solid line: noise
energy; dotted-dashed line: no control; dashed line: with control; dotted line: control energy.
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Figure 13. Robustness of control scheme with respect to uncertainties in parameter setting
Ω . Effective control range, defined in terms of the Ω − ΩB interval as a function of nominal
design swirl number Ωp − ΩB for N = 12, 
 = 1.

6.4. Driving the ‘true’ control to zero

It should be emphasized that throughout the analysis of the previous sections, the
control variable u = U̇ has been defined as the time derivative of the ‘true’ control
signal U (t). Furthermore, the control u was designed to minimize the functional J
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Figure 14. Evolution of ‘true’ energies E1 = 〈X1, EX1〉 and ||U ||2 pertaining to original
variables K1(z, t), ψ1(z, t) and U (t) introduced in (4.1) on a semi-log plot as a function of
time for Ω = ΩB + 1, N = 12 and 
 = 1. Thick solid line: E1(t) without control; thin
solid line: E1(t) with control and without augmentation; dashed-dotted line: ||U ||2(t) without
augmentation; dashed line: E1(t) with control and with augmentation (r = 103); dotted line:
||U ||2(t) with augmentation.

defined in (4.8) as the time-integral of the sum of the state energy E(t) = 〈X, EX〉 and
the control energy (u, u). This procedure demonstrated that both quantities decrease
exponentially to zero with time when control is applied. It remains to establish that
the ‘true’ energy E1(t) = 〈X1, EX1〉, where X1(z, t) = (K1(z, t), ψ1(z, t))T denotes the
vector before the change of variables (4.1), and the ‘true’ control energy ||U ||2 also
decay to zero with time. Both these ‘true’ measures are represented in figure 14, in the
case where the initial value of U (t) has been set to U (0) = 0. It is noteworthy that
E1(t) and ||U 2||(t) do not decay to zero: rather, they tend to constant values for large
time. One might argue that the initial value U (0) may be chosen a posteriori in such a
way that E1(t) and ||U 2||(t) go to zero. We look instead for an a priori method based
on the augmentation of the state space, as suggested in the fluid mechanical context
by Joshi et al. (1997) and Högberg et al. (2003). Accordingly, let the full-state system
(4.4) be replaced by the augmented state-space form[

E 0

0 1

](
Ẋ

U̇

)
=

[
A 0

0 0

] (
X

U

)
+

(
B
1

)
u, (6.1)

the low-order system (4.15) be replaced by[
I 0

0 1

] (
ẋ

U̇

)
=

[
A 0

0 0

] (
x

U

)
+

(
B

1

)
u, (6.2)

and the cost functional (4.8) by

J =

∫ T

0

(x∗Mx + 
2u∗u + (1 + r2)‖U‖2) dt . (6.3)

The addition of the last term in the integrand of (6.3) ensures that U (t) also
is minimized. As advocated by Högberg & Henningson (2002), a second tuning
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parameter r has been introduced in order to stabilize the zero eigenvalue in the
augmented matrix (6.2). We consequently apply the same methodology consisting
of a control design on the reduced-order system (6.2) followed by a projection
procedure defined in (5.3)–(5.7) and adapted to the augmented state vector (X, U )T .
Typical results of the augmentation procedure with 
 = 1 and r = 103 are illustrated in
figure 14. The ‘true’ state energy is seen to decrease to zero exponentially, in contrast
with its non-augmented counterpart. The same holds for the ‘true’ control energy.

7. Actuators and sensors
7.1. Choice of actuators

As stated in § 3, the Wang & Rusak instability is driven by the inlet and outlet
conditions, which are the only energy providers in the flow. This is the primary
motivation to place the actuator at the pipe inlet or outlet. In the last three sections,
we have designed a full-state information control loop with the actuator placed at
the inlet, the instantaneous inlet circulation perturbation being K (1)(0, t) ≡ U (t). Let
us now examine the performance of an actuator located at the outlet and controlling
the outlet radial velocity through ψ (1)

z (L, t) ≡ U (t). In order to cast the forced linear
system in a suitable form for the application of optimal control theory, the variables
are changed according to

(
K (1)

ψ (1)

)
=

X︷ ︸︸ ︷(
K

ψ

)
+

G︷ ︸︸ ︷(√
ΩBg(z)
g(z)

)
U (t), (7.1)

where g(z) is assumed to satisfy

gzzz −
√

Ω − ΩB gz = 0, (7.2)

with boundary conditions

g(0) = 0, gzz(0) = 0, gz(L) = 0. (7.3)

The function g(z) is given by

g(z) = a cos(
√

Ω − ΩBz) + b sin(
√

Ω − ΩBz) + c, (7.4)

with a, b and c solutions of the linear system
a

b

c


 =




1 0 1

Ω − ΩB 0 0

−
√

Ω − ΩB sin(
√

Ω − ΩBL)
√

Ω − ΩB cos(
√

Ω − ΩBL) 0




−1 
0

0

1


 .

(7.5)

Upon making this change of variables, the system finally becomes

EẊ = AX + Bu (7.6)

with u = U̇ and where the ‘receptivity’ matrix B equals

B =

(
−

√
Ωg(z)

−(gzz(z) − ΩBg(z))

)
. (7.7)

The same strategy as in § § 4 and 5 can then be followed step-by-step. The effective
controllability limit is determined to be 28% above ΩB , thereby showing that a
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Actuator Controllability limit (%)

K(0) = U (t) 13
ψ(0) = U (t) 10
ψzz(0) = U (t) 6
ψz(L) = U (t) 28
[K(0), ψz(L)] = [U1(t), U2(t)] 28

Table 1. Effective controllability limit for different actuators expressed
as a percentage above ΩB .

controller located at the outlet can be much more effective than at the inlet. Similar
changes of variables can be derived leading to expressions analogous to (7.6) for
an actuator controlling one of the two remaining boundary conditions in (3.3). The
results are collected in table 1: the most efficient control is obtained by acting on the
radial velocity at the downstream end of the pipe.

A double actuator can also be easily implemented by considering a control
amplitude with two degrees of freedom as well as a double column control matrix B;
our computations however have shown that the implementation of a double actuator
does not further increase the controllability limit.

7.2. Sensors without estimation

In the formulation presented in § 5, the reduced-order state x has been obtained
by projecting the full state vector X. However, in certain cases, it may happen that
only partial knowledge of the system is available and, in such situations, the control
effectiveness must be ascertained. This is, in particular, the case in physically relevant
situations where sensors have to be used to measure the internal state. The general
methodology then consists in deriving a Kalman filter to estimate the internal state
from the measurements. In the present situation, we can take advantage of the
reduced-order control strategy. Let Y = CX be the partial-state vector available to
the designer, where C is a linear operator. Since we are only interested in retrieving
the reduced-order state vector x in order to determine the control u = Kx, it seems
reasonable that partial information may be sufficient to recover x, as long as the
partial state dimension exceeds the reduced-order N! To test this conjecture, we set
N = 4 and assume that the component ψ(z, t) of the state X(z, t) is available only at
four equally spaced points

Y = (ψ(L/5, t), ψ(2L/5, t), ψ(3L/5, t), ψ(4L/5, t))T .

Physically, this corresponds to the measurement of the axial velocity perturbation at
four axial locations.

As in § 5, the missing link is the projector Π̃ which projects the partial-state vector
Y(t) onto the reduced subspace spanned by the N eigenmodes Xi(z) of § 3 via the
relation

x(t) = Π̃Y(t). (7.8)

The procedure is the same as for the determination of Π in § 5. By analogy with the
scalar product defined in (4.5), let us first introduce the Cartesian scalar product on
the partial state Y according to

[Yα, Yβ] = 〈Xα, CtCXβ〉. (7.9)
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Figure 15. Comparison between full-state information control and partial-state information
control for Ω = ΩB + 1, N = 4 and 
 = 1: perturbation energy E as a function of time t on
a semi-log plot. Solid line: no control; dashed line: full-state information control; dotted line:
partial-state information control with four sensors.

We also introduce the notation ψ̃i = Cψi(z) for i = 1 . . . N . The partial state vector
is decomposed into

Y =

N∑
i=1

αiψ̃ i + R, (7.10)

where the remainder R is such that [ψ̃ i, R] = 0 for all i = 1 . . . N . Taking the
Cartesian scalar product of (7.10) with ψ̃j yields

[ψ̃j , Y] =

N∑
i=1

αi[ψ̃j , ψ̃ i]. (7.11)

Following the same steps as those leading from (5.5) to (5.7), one finally obtains

Π̃ = M̃−1
2 P̃2, (7.12)

where M̃2 is the N × N matrix of angles [ψ̃j , ψ̃ i] and P̃2 is the N × 4 matrix such

that P̃2Y ≡ [ψj, Y] (j = 1 . . . N ).
The effectiveness of partial information control is illustrated in figure 15. Partial-

state information control is seen to be slightly less efficient than its full-state
counterpart.

8. Conclusion
The main results of the study are as follows: the design of an optimal feedback

control scheme on a reduced-order system of the least stable modes has been
demonstrated to effectively quench the unstable perturbations leading to vortex
breakdown in a finite-length tube, in the linear stage. The feedback is implemented
by varying the inlet circulation accordingly. When the reduced order is chosen to
be larger than N = 4, the columnar state is preserved for swirl parameter settings
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13% above global instability onset. The control effort approaches zero as time goes
to infinity. It should be stressed that the closed-loop control procedure will remain
effective for all possible initial conditions since superposition holds as long as the
linear approximation is valid. This type of control strategy appears to be promising
for experimental implementation: the gain matrix pertaining to the reduced-order
system is calculated once and for all off-line. Furthermore, the control law has been
shown to be robust with respect to noise, as well as uncertainty in the parameter
settings, without resorting to a robust control formulation, as for instance in Bewley &
Liu (1998). The control scheme has also been demonstrated to remain effective even
when only partial state information is available. Furthermore, with N � 6, the
effective controllability limit can be increased up to 28% above global instability
onset provided the actuator is chosen to be the radial velocity perturbation at the
outlet.

It may legitimately be asked whether this control approach could remain effective
further away from threshold by increasing the order of the reduced system. Attempts
in this direction have not been conclusive: as N is increased, the identification of the
modes becomes difficult since their streamwise structure consists of a superposition
of Kelvin waves, some of which may be exponentially small with respect to others.
This issue may also be related to the method used to project the full system on
a reduced-order subspace. Note that instead of using the adjoint eigenmodes as a
biorthogonal basis we deliberately chose the original eigenfunctions in the scalar
product projections (4.13) and (5.5). This method is valid but it leads to the inversion
of ill-conditioned ‘matrices of angles’ M in the ‘receptivity matrix’ B (see (4.15)) and
M2 in the projector Π (see (5.7)). One may wonder why the adjoint eigenfunctions
were not used instead, as in a classical Galerkin procedure. Such a formulation
was indeed attempted: the standard derivation of the adjoint problem to the (K, ψ)
original problem (3.2)–(3.3) presented unforeseen difficulties, particularly in that it led
to too many adjoint boundary conditions. This inconsistency is most likely related to
the (K, ψ) formulation. It does not arise in the primitive variable approach.

The present study raises the following question: what is the reason for the
discrepancy between the controllability limit in the reduced-order subspace (equal
to the swirl setting where the (N + 1)th mode becomes unstable) and the lower
effective controllability limit obtained for the full linear state? In other words, why is
there a controllability limit at a swirl value lower than expected? According to the
mathematical result stated in Lauga & Bewley (2002), an unstable mode is stabilizable
if and only if its entry in the receptivity matrix B is non-zero. In the case of our full
system (4.4), the entries of the receptivity matrix B corresponding to unstable modes
are all non-zero and there should be no controllability limit.

However, Lauga & Bewley (2002) have also demonstrated that finite numerical
accuracy may result in an effective finite controllability limit for a system which is
in principle controllable for all values of the bifurcation parameter. In our case, the
unstable modes are found to yield among the smallest entries in the receptivity matrix
B. This feature together with the necessarily finite numerical accuracy is thought to
be responsible for the discrepancy between the controllability limits in the reduced
and full system respectively.

It might be argued that the approach taken in the present study is somewhat
unorthodox. According to Cortelezzi & Speyer (1998), a classical mathematically
based methodology would consist in first discretizing the full linear system (as in our
case) and then deriving a reduced-order model by neglecting poorly controllable states.
In the present context, due to the limited efficiency of the actuator, this procedure
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is not applicable since the unstable modes are among the least controllable (see the
above discussion on the entries of the receptivity matrix B.)

The approach taken here also differs from many control studies, in that it does not
rely on the design of an estimator. Advantage is taken instead of the projection on a
reduced-order space. This procedure, which is physically based, has been demonstrated
to yield an efficient closed-loop control scheme even in the presence of partial-state
information at a few sensor locations.

The closed-loop strategy proposed in the present study may also be compared
with open-loop control schemes. For instance, according to the results of Rusak,
Wang & Whiting (1998), a 13% delay of breakdown onset above the nominal values
Ω1 could also be achieved by adding a jet component to the uniform inlet flow with
a maximum relative velocity of 15%. The same result could be obtained with a 10%
pipe contraction (Rusak & Meder 2002). It should be emphasized that in the above
open-loop approaches, the control has to be applied for all times, whereas, in the
present closed-loop schemes, the control amplitude is allowed to vanish for large
times, thereby greatly reducing the control ‘cost’.

The control procedure presented in this study is limited to the case of a columnar
state with solid body rotation and plug axial flow. For this simple base flow, the radial
variations may be conveniently separated out, provided that one restricts attention to
the first branch, as discussed in § 3.2. For more realistic base states, this simplification
is ruled out. Future extensions should address the optimal control problem, in these
less-idealized situations.

Another non-trivial generalization relates to the control of the nonlinear time-
dependent Squire–Long equations which incorporate vortex breakdown as a possible
finite-amplitude state. The ability of our control strategy to dampen finite-size
disturbances above Ω0 remains an open issue: it will depend both on the nonlinear
characteristics of the bifurcation, i.e. on the size and shape of the basin of attraction
of the different states, and on the linear evolution properties such as the intensity of
the transients induced by the non-normality of the operator under consideration. As
shown by Bewley & Liu (1998), optimal control theory, on which our reduced-order
control strategy is based, is suitable to limit the intensity of the transients, by reducing
the non-orthogonality of the controlled eigenmodes.

The authors are very grateful to E. Lauga for enlightening advice on optimal
control theory. C. Cossu and P. Schmid are kindly acknowledged for stimulating
discussions. The work is supported by the French Ministry of Defense under grant
No. 99 001004707588.
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